163 research outputs found

    Strategic Deterrence and the Cruise Missile

    Get PDF
    This, the 1977 prizewinner, argues that the cruise missile is stabilizing, adds an effective element to deterrence, and is an inappropriate arms limitation bargaining chip to squander in order to achieve Backfire Bomber basing restrictions

    No variations in transit times for Qatar-1 b

    Full text link
    The transiting hot Jupiter planet Qatar-1 b was presented to exhibit variations in transit times that could be of perturbative nature. A hot Jupiter with a planetary companion on a nearby orbit would constitute an unprecedented planetary configuration, important for theories of formation and evolution of planetary systems. We performed a photometric follow-up campaign to confirm or refute transit timing variations. We extend the baseline of transit observations by acquiring 18 new transit light curves acquired with 0.6-2.0 m telescopes. These photometric time series, together with data available in the literature, were analyzed in a homogenous way to derive reliable transit parameters and their uncertainties. We show that the dataset of transit times is consistent with a linear ephemeris leaving no hint for any periodic variations with a range of 1 min. We find no compelling evidence for the existence of a close-in planetary companion to Qatar-1 b. This finding is in line with a paradigm that hot Jupiters are not components of compact multi-planetary systems. Based on dynamical simulations, we place tighter constraints on a mass of any fictitious nearby planet in the system. Furthermore, new transit light curves allowed us to redetermine system parameters with the precision better than that reported in previous studies. Our values generally agree with previous determinations.Comment: Accepted for publication in A&

    Departure from the constant-period ephemeris for the transiting exoplanet WASP-12 b

    Get PDF
    Most hot Jupiters are expected to spiral in towards their host stars due to transfering of the angular momentum of the orbital motion to the stellar spin. Their orbits can also precess due to planet-star interactions. Calculations show that both effects could be detected for the very-hot exoplanet WASP-12 b using the method of precise transit timing over a timespan of the order of 10 yr. We acquired new precise light curves for 29 transits of WASP-12 b, spannning 4 observing seasons from November 2012 to February 2016. New mid-transit times, together with literature ones, were used to refine the transit ephemeris and analyse the timing residuals. We find that the transit times of WASP-12 b do not follow a linear ephemeris with a 5 sigma confidence level. They may be approximated with a quadratic ephemeris that gives a rate of change in the orbital period of -2.56 +/- 0.40 x 10^{-2} s/yr. The tidal quality parameter of the host star was found to be equal to 2.5 x 10^5 that is comparable to theoretical predictions for Sun-like stars. We also consider a model, in which the observed timing residuals are interpreted as a result of the apsidal precession. We find, however, that this model is statistically less probable than the orbital decay.Comment: Accepted for publication in A&A Letter

    New transit observations for HAT-P-30 b, HAT-P-37 b, TrES-5 b, WASP-28 b, WASP-36 b, and WASP-39 b

    Get PDF
    We present new transit light curves for planets in six extrasolar planetary systems. They were acquired with 0.4-2.2 m telescopes located in west Asia, Europe, and South America. When combined with literature data, they allowed us to redetermine system parameters in a homogeneous way. Our results for individual systems are in agreement with values reported in previous studies. We refined transit ephemerides and reduced uncertainties of orbital periods by a factor between 2 and 7. No sign of any variations in transit times was detected for the planets studied.Comment: Submitted to Acta Astronomic

    Transit Timing Analysis in the HAT-P-32 system

    Get PDF
    We present the results of 45 transit observations obtained for the transiting exoplanet HAT-P-32b. The transits have been observed using several telescopes mainly throughout the YETI network. In 25 cases, complete transit light curves with a timing precision better than 1.41.4\:min have been obtained. These light curves have been used to refine the system properties, namely inclination ii, planet-to-star radius ratio Rp/RsR_\textrm{p}/R_\textrm{s}, and the ratio between the semimajor axis and the stellar radius a/Rsa/R_\textrm{s}. First analyses by Hartman et al. (2011) suggest the existence of a second planet in the system, thus we tried to find an additional body using the transit timing variation (TTV) technique. Taking also literature data points into account, we can explain all mid-transit times by refining the linear ephemeris by 21ms. Thus we can exclude TTV amplitudes of more than 1.5\sim1.5min.Comment: MNRAS accepted; 13 pages, 10 figure

    Transit Timing Analysis in the HAT-P-32 System

    Full text link
    We present the results of 45 transit observations obtained for the transiting exoplanet HATP- 32b. The transits have been observed using several telescopes mainly throughout the YETI (Young Exoplanet Transit Initiative) network. In 25 cases, complete transit light curves with a timing precision better than 1.4 min have been obtained. These light curves have been used to refine the system properties, namely inclination i, planet-to-star radius ratio Rp/Rs, and the ratio between the semimajor axis and the stellar radius a/Rs. First analyses by Hartman et al. suggests the existence of a second planet in the system, thus we tried to find an additional body using the transit timing variation (TTV) technique. Taking also the literature data points into account, we can explain all mid-transit times by refining the linear ephemeris by 21 ms. Thus, we can exclude TTV amplitudes of more than ∼1.5min
    corecore